Blog Logo

October 21, 2024

web消息推送方式


消息推送一般又分为 web 端消息推送和移动端消息推送。

消息推送无非是推(push)和拉(pull)两种形式,下边我们逐个了解下。

b08fbb575337cc8a4e27a1274fb70eff

短轮询

轮询(polling)应该是实现消息推送方案中最简单的一种,这里我们暂且将轮询分为短轮询和长轮询。

短轮询很好理解,指定的时间间隔,由浏览器向服务器发出 HTTP 请求,服务器实时返回未读消息数据给客户 端,浏览器再做渲染显示。

一个简单的 JS 定时器就可以搞定,每秒钟请求一次未读消息数接口,返回的数据展示即可。

setInterval(() => {
	// 方法请求
	messageCount().then(res => {
		if (res.code === 200) {
			this.messageCount = res.data;
		}
	});
}, 1000);

效果还是可以的,短轮询实现固然简单,缺点也是显而易见,由于推送数据并不会频繁变更,无论后端此时是 否有新的消息产生,客户端都会进行请求,势必会对服务端造成很大压力,浪费带宽和服务器资源。

1

长轮询

长轮询是对上边短轮询的一种改进版本,在尽可能减少对服务器资源浪费的同时,保证消息的相对实时性。长 轮询在中间件中应用的很广泛,比如Nacosapollo配置中心,消息队列 kafka、RocketMQ 中都有用到长 轮询。

DeferredResult 可以允许容器线程快速释放占用的资源,不阻塞请求线程,以此接受更多的请求提升系统的 吞吐量,然后启动异步工作线程处理真正的业务逻辑,处理完成调用 DeferredResult.setResult(200)提交响 应结果。

下边我们用长轮询来实现消息推送。

因为一个 ID 可能会被多个长轮询请求监听,所以我采用了guava包提供的Multimap结构存放长轮询,一 个 key 可以对应多个 value。一旦监听到 key 发生变化,对应的所有长轮询都会响应。前端得到非请求超时 的状态码,知晓数据变更,主动查询未读消息数接口,更新页面数据。

@Controller
@RequestMapping("/polling")
public class PollingController {
 
    // 存放监听某个Id的长轮询集合
    // 线程同步结构
    public static Multimap<String, DeferredResult<String>> watchRequests = Multimaps.synchronizedMultimap(HashMultimap.create());
 
    /**
     * 公众号:程序员小富
     * 设置监听
     */
    @GetMapping(path = "watch/{id}")
    @ResponseBody
    public DeferredResult<String> watch(@PathVariable String id) {
        // 延迟对象设置超时时间
        DeferredResult<String> deferredResult = new DeferredResult<>(TIME_OUT);
        // 异步请求完成时移除 key,防止内存溢出
        deferredResult.onCompletion(() -> {
            watchRequests.remove(id, deferredResult);
        });
        // 注册长轮询请求
        watchRequests.put(id, deferredResult);
        return deferredResult;
    }
 
    /**
     * 公众号:程序员小富
     * 变更数据
     */
    @GetMapping(path = "publish/{id}")
    @ResponseBody
    public String publish(@PathVariable String id) {
        // 数据变更 取出监听ID的所有长轮询请求,并一一响应处理
        if (watchRequests.containsKey(id)) {
            Collection<DeferredResult<String>> deferredResults = watchRequests.get(id);
            for (DeferredResult<String> deferredResult : deferredResults) {
                deferredResult.setResult("我更新了" + new Date());
            }
        }
        return "success";
    }

当请求超过设置的超时时间,会抛出 AsyncRequestTimeoutException 异常,这里直接用@ControllerAdvice 全局捕获统一返回即可,前端获取约定好的状态码后再次发起长轮询请求,如此往复调用。

@ControllerAdvice
public class AsyncRequestTimeoutHandler {
 
    @ResponseStatus(HttpStatus.NOT_MODIFIED)
    @ResponseBody
    @ExceptionHandler(AsyncRequestTimeoutException.class)
    public String asyncRequestTimeoutHandler(AsyncRequestTimeoutException e) {
        System.out.println("异步请求超时");
        return "304";
    }
}

我们来测试一下,首先页面发起长轮询请求/polling/watch/10086 监听消息更变,请求被挂起,不变更数据 直至超时,再次发起了长轮询请求;紧接着手动变更数据/polling/publish/10086,长轮询得到响应,前端处 理业务逻辑完成后再次发起请求,如此循环往复。

2

长轮询相比于短轮询在性能上提升了很多,但依然会产生较多的请求,这是它的一点不完美的地方。

iframe 流

iframe 流就是在页面中插入一个隐藏的标签,通过在 src 中请求消息数量 API 接口,由此在服务端和客户 端之间创建一条长连接,服务端持续向iframe传输数据。

传输的数据通常是 HTML、或是内嵌的 javascript 脚本,来达到实时更新页面的效果。

这种方式实现简单,前端只要一个iframe标签搞定了

<iframe src="/iframe/message" style="display:none"></iframe>

服务端直接组装 html、js 脚本数据向 response 写入就行了

@Controller
@RequestMapping("/iframe")
public class IframeController {
    @GetMapping(path = "message")
    public void message(HttpServletResponse response) throws IOException, InterruptedException {
        while (true) {
            response.setHeader("Pragma", "no-cache");
            response.setDateHeader("Expires", 0);
            response.setHeader("Cache-Control", "no-cache,no-store");
            response.setStatus(HttpServletResponse.SC_OK);
            response.getWriter().print(" <script type=\"text/javascript\">\n" +
                    "parent.document.getElementById('clock').innerHTML = \"" + count.get() + "\";" +
                    "parent.document.getElementById('count').innerHTML = \"" + count.get() + "\";" +
                    "</script>");
        }
    }
}
 

3

但我个人不推荐,因为它在浏览器上会显示请求未加载完,图标会不停旋转,简直是强迫症杀手。

SSE

很多人可能不知道,服务端向客户端推送消息,其实除了可以用WebSocket这种耳熟能详的机制外,还有一 种服务器发送事件(Server-sent events),简称 SSE。

SSE 它是基于HTTP协议的,我们知道一般意义上的 HTTP 协议是无法做到服务端主动向客户端推送消息的, 但 SSE 是个例外,它变换了一种思路。

SSE 在服务器和客户端之间打开一个单向通道,服务端响应的不再是一次性的数据包而 是text/event-stream类型的数据流信息,在有数据变更时从服务器流式传输到客户端。

整体的实现思路有点类似于在线视频播放,视频流会连续不断的推送到浏览器,你也可以理解成,客户端在完 成一次用时很长(网络不畅)的下载。

SSE 与 WebSocket 作用相似,都可以建立服务端与浏览器之间的通信,实现服务端向客户端推送消息,但还 是有些许不同:

  • SSE 是基于 HTTP 协议的,它们不需要特殊的协议或服务器实现即可工作;WebSocket 需单独服务器来处理 协议。
  • SSE 单向通信,只能由服务端向客户端单向通信;webSocket 全双工通信,即通信的双方可以同时发送和接 受信息。
  • SSE 实现简单开发成本低,无需引入其他组件;WebSocket 传输数据需做二次解析,开发门槛高一些。
  • SSE 默认支持断线重连;WebSocket 则需要自己实现。
  • SSE 只能传送文本消息,二进制数据需要经过编码后传送;WebSocket 默认支持传送二进制数据。

SSE 与 WebSocket 该如何选择?

技术并没有好坏之分,只有哪个更合适

SSE 好像一直不被大家所熟知,一部分原因是出现了 WebSockets,这个提供了更丰富的协议来执行双向、全 双工通信。对于游戏、即时通信以及需要双向近乎实时更新的场景,拥有双向通道更具吸引力。

但是,在某些情况下,不需要从客户端发送数据。而你只需要一些服务器操作的更新。比如:站内信、未读消 息数、状态更新、股票行情、监控数量等场景,SEE 不管是从实现的难易和成本上都更加有优势。此外,SSE 具有 WebSockets 在设计上缺乏的多种功能,例如:自动重新连接、事件 ID 和发送任意事件的能力。

前端只需进行一次 HTTP 请求,带上唯一 ID,打开事件流,监听服务端推送的事件就可以了

<script>
    let source = null;
    let userId = 7777
    if (window.EventSource) {
        // 建立连接
        source = new EventSource('http://localhost:7777/sse/sub/'+userId);
        setMessageInnerHTML("连接用户=" + userId);
        /**
         * 连接一旦建立,就会触发open事件
         * 另一种写法:source.onopen = function (event) {}
         */
        source.addEventListener('open', function (e) {
            setMessageInnerHTML("建立连接。。。");
        }, false);
        /**
         * 客户端收到服务器发来的数据
         * 另一种写法:source.onmessage = function (event) {}
         */
        source.addEventListener('message', function (e) {
            setMessageInnerHTML(e.data);
        });
    } else {
        setMessageInnerHTML("你的浏览器不支持SSE");
    }
</script>

服务端的实现更简单,创建一个SseEmitter对象放入sseEmitterMap进行管理

private static Map<String, SseEmitter> sseEmitterMap = new ConcurrentHashMap<>();
 
/**
 * 创建连接
 *
 * @date: 2022/7/12 14:51
 * @auther: 公众号:程序员小富
 */
public static SseEmitter connect(String userId) {
    try {
        // 设置超时时间,0表示不过期。默认30秒
        SseEmitter sseEmitter = new SseEmitter(0L);
        // 注册回调
        sseEmitter.onCompletion(completionCallBack(userId));
        sseEmitter.onError(errorCallBack(userId));
        sseEmitter.onTimeout(timeoutCallBack(userId));
        sseEmitterMap.put(userId, sseEmitter);
        count.getAndIncrement();
        return sseEmitter;
    } catch (Exception e) {
        log.info("创建新的sse连接异常,当前用户:{}", userId);
    }
    return null;
}
 
/**
 * 给指定用户发送消息
 *
 * @date: 2022/7/12 14:51
 * @auther: 公众号:程序员小富
 */
public static void sendMessage(String userId, String message) {
 
    if (sseEmitterMap.containsKey(userId)) {
        try {
            sseEmitterMap.get(userId).send(message);
        } catch (IOException e) {
            log.error("用户[{}]推送异常:{}", userId, e.getMessage());
            removeUser(userId);
        }
    }
 
}

4

我们模拟服务端推送消息,看下客户端收到了消息,和我们预期的效果一致。

MQTT

什么是 MQTT 协议?

MQTT 全称(Message Queue Telemetry Transport):一种基于发布/订阅(publish/subscribe)模式的轻量 级通讯协议,通过订阅相应的主题来获取消息,是物联网(Internet of Thing)中的一个标准传输协议。

该协议将消息的发布者(publisher)与订阅者(subscriber)进行分离,因此可以在不可靠的网络环境中, 为远程连接的设备提供可靠的消息服务,使用方式与传统的 MQ 有点类似。

TCP 协议位于传输层,MQTT 协议位于应用层,MQTT 协议构建于 TCP/IP 协议上,也就是说只要支持 TCP/IP 协议栈的地方,都可以使用 MQTT 协议。

为什么要用 MQTT 协议?

MQTT 协议为什么在物联网(IOT)中如此受偏爱?而不是其它协议,比如我们更为熟悉的 HTTP 协议呢?

  • 首先 HTTP 协议它是一种同步协议,客户端请求后需要等待服务器的响应。而在物联网(IOT)环境中,设 备会很受制于环境的影响,比如带宽低、网络延迟高、网络通信不稳定等,显然异步消息协议更为适合 IOT 应用程序。
  • HTTP 是单向的,如果要获取消息客户端必须发起连接,而在物联网(IOT)应用程序中,设备或传感器往往 都是客户端,这意味着它们无法被动地接收来自网络的命令。

通常需要将一条命令或者消息,发送到网络上的所有设备上。HTTP 要实现这样的功能不但很困难,而且成本 极高。

具体的 MQTT 协议介绍和实践,这里我就不再赘述了,大家可以参考我之前的两篇文章,里边写的也都很详细 了。

Websocket

websocket应该是大家都比较熟悉的一种实现消息推送的方式,上边我们在讲 SSE 的时候也和 websocket 进行过比较。

WebSocket是一种在 TCP 连接上进行全双工通信的协议,建立客户端和服务器之间的通信渠道。浏览器和服 务器仅需一次握手,两者之间就直接可以创建持久性的连接,并进行双向数据传输。

springboot 整合 websocket,先引入websocket相关的工具包,和 SSE 相比额外的开发成本。

<!-- 引入websocket -->
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-websocket</artifactId>
</dependency>

服务端使用@ServerEndpoint注解标注当前类为一个 websocket 服务器,客户端可以通过 ws://localhost:7777/webSocket/10086 来连接到 WebSocket 服务器端。

@Component
@Slf4j
@ServerEndpoint("/websocket/{userId}")
public class WebSocketServer {
    //与某个客户端的连接会话,需要通过它来给客户端发送数据
    private Session session;
    private static final CopyOnWriteArraySet<WebSocketServer> webSockets = new CopyOnWriteArraySet<>();
    // 用来存在线连接数
    private static final Map<String, Session> sessionPool = new HashMap<String, Session>();
    /**
     * 公众号:程序员小富
     * 链接成功调用的方法
     */
    @OnOpen
    public void onOpen(Session session, @PathParam(value = "userId") String userId) {
        try {
            this.session = session;
            webSockets.add(this);
            sessionPool.put(userId, session);
            log.info("websocket消息: 有新的连接,总数为:" + webSockets.size());
        } catch (Exception e) {
        }
    }
    /**
     * 公众号:程序员小富
     * 收到客户端消息后调用的方法
     */
    @OnMessage
    public void onMessage(String message) {
        log.info("websocket消息: 收到客户端消息:" + message);
    }
    /**
     * 公众号:程序员小富
     * 此为单点消息
     */
    public void sendOneMessage(String userId, String message) {
        Session session = sessionPool.get(userId);
        if (session != null && session.isOpen()) {
            try {
                log.info("websocket消: 单点消息:" + message);
                session.getAsyncRemote().sendText(message);
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
    }
}

前端初始化打开 WebSocket 连接,并监听连接状态,接收服务端数据或向服务端发送数据。

<script>
    var ws = new WebSocket('ws://localhost:7777/webSocket/10086');
    // 获取连接状态
    console.log('ws连接状态:' + ws.readyState);
    //监听是否连接成功
    ws.onopen = function () {
        console.log('ws连接状态:' + ws.readyState);
        //连接成功则发送一个数据
        ws.send('test1');
    }
    // 接听服务器发回的信息并处理展示
    ws.onmessage = function (data) {
        console.log('接收到来自服务器的消息:');
        console.log(data);
        //完成通信后关闭WebSocket连接
        ws.close();
    }
    // 监听连接关闭事件
    ws.onclose = function () {
        // 监听整个过程中websocket的状态
        console.log('ws连接状态:' + ws.readyState);
    }
    // 监听并处理error事件
    ws.onerror = function (error) {
        console.log(error);
    }
    function sendMessage() {
        var content = $("#message").val();
        $.ajax({
            url: '/socket/publish?userId=10086&message=' + content,
            type: 'GET',
            data: { "id": "7777", "content": content },
            success: function (data) {
                console.log(data)
            }
        })
    }
</script>
 

5

页面初始化建立 websocket 连接,之后就可以进行双向通信了,效果还不错

自定义推送

上边我们给我出了 6 种方案的原理和代码实现,但在实际业务开发过程中,不能盲目的直接拿过来用,还是 要结合自身系统业务的特点和实际场景来选择合适的方案。

推送最直接的方式就是使用第三推送平台,毕竟钱能解决的需求都不是问题,无需复杂的开发运维,直接可以 使用,省时、省力、省心,像 goEasy、极光推送都是很不错的三方服务商。

消息推送系统内部是相当复杂的,诸如消息内容的维护审核、圈定推送人群、触达过滤拦截(推送的规则频 次、时段、数量、黑白名单、关键词等等)、推送失败补偿非常多的模块,技术上涉及到大数据量、高并发的 场景也很多。所以我们今天的实现方式在这个庞大的系统面前只是小打小闹。

参考 我有 7 种 实现 web 实时消息推送的方案,7 种!